
Dziedziczenie I

Mechanizm dziedziczenia

Dziedziczenie to mechanizm umożliwiający definiowanie nowej klasy
przy wykorzystaniu klasy wcześniej zdefiniowanej.

Jeśli mamy gotową klasę klocek, a potrzebna jest nam klasa

klocekObramowany, mamy do wyboru kilka dróg:

1.

o przerobić klasę klocek, na klasę klocekObramowany

o mamy nową klasę, ale tracimy starą
2.

o dodać klasę klocekObramowany na wzór klasy klocek

o musimy pamiętać, by każdą poprawkę w klasie klocek

nanosić również w klasie klocekObramowany

3.

o zbudować klasę klocekObramowany wykorzystując klasę

klocek i mechanizm dziedziczenia

o zachowujemy starą klasę, a w nowej klasie piszemy tylko to
co chcemy dodać lub zmienić.

Dziedziczenie jest trzecią cechą charakterystyczną programowania
obiektowego.

Klasa pochodna

Nowa klasa zbudowana na podstawie starej klasy przy użyciu
dziedziczenia nazywa się klasą pochodną.

Klasa pochodna klocekObramowany może być zdefiniowana na przykład tak:

class klocekObramowany : public klocek{

private:

 int kolorRamki;

public:

 klocekObramowany(int i, int j, int kol, int kolRamki){

 wiersz=i;

 kolumna=j;

 kolor=kol;

 kolorRamki=kolRamki;

 }

 void pokaz(){

 boxFill(wiersz-25,kolumna-25,wiersz+25,kolumna+25,kolor);

 box(wiersz-25,kolumna-

25,wiersz+25,kolumna+25,kolorRamki);

 }

};

Klasa klocek jest dla klasy klocekObramowany klasą podstawową,

albo inaczej klasą macierzystą.

Mówimy też, że klasa pochodna jest wywiedziona z klasy macierzystej.

 Definicja klasy macierzystej musi być znana kompilatorowi w

momencie kompilowania klasy pochodnej

 Klasa pochodna dziedziczy, t.zn. zawiera wszystkie składniki klasy
macierzystej.

Czego się nie dziedziczy?

W C++ nie dziedziczy się konstruktorów, destruktorów i operatora
przypisania

 Niedziedziczenie konstruktorów i destruktorów jest dość intuicyjne.

 Obiekt klasy pochodnej generalnie ma więcej cech, więc trudno
oczekiwać, żeby konstruktor klasy podstawowej skonstruował

poprawnie obiekt klasy pochodnej, a destruktor go zlikwidował
 Operator przypisania nie konstruuje obiektu od zera, ale likwiduje

jego starą zawartość i wprowadza nową. W tym sensie wypełnia rolę
zbliżoną do konstruktora, więc też się go nie dziedziczy

Co możemy w klasie pochodnej

Klasa pochodna zawiera składniki odziedziczone. Ponadto klasa ta może

zawierać:

 dodatkowe dane składowe
 dodatkowe funkcje składowe
 nowe definicje funkcji składowych już zdefiniowanych w klasie

macierzystej

Tak może wyglądać nowa wersja funkcji jedz w klasie taksowka

file:///C:/Users/Serwer/Desktop/Materiały/Programowanie 1 - wykład/all (1)/wsb-programowanie-I-2007/cpp-dziedziczenie/dziedziczenie-cz1-2.html
file:///C:/Users/Serwer/Desktop/Materiały/Programowanie 1 - wykład/all (1)/wsb-programowanie-I-2007/cpp-dziedziczenie/dziedziczenie-cz1-0.html
file:///C:/Users/Serwer/Desktop/Materiały/Programowanie 1 - wykład/all (1)/wsb-programowanie-I-2007/cpp-dziedziczenie/dziedziczenie-cz1-4.html

 void taksowka::jedz(float ile_kilometrow){

 float ile_przejedziemy=min(ile_kilometrow,paliwo*10);

 przebieg+=ile_przejedziemy;

 paliwo-=ile_przejedziemy/10;

 taksometr+=ile_przejedziemy*3.5;

 }

Nowe definicje funkcji w klasach pochodnych są przykładem zasłaniania, a
nie przeładowania.

Do wersji funkcji z klasy macierzystej można się w klasie pochodnej

odwołać wykorzystując kwalifikator zakresu:

 taksowka wawel_taxi;

 wawel_taxi.samochod::jedz(10.4);

Dziedziczenie, a kompozycja

 Dziedziczenie nie zastępuje kompozycji
 Proces kompozycji wykorzystujemy, jeśli między obiektami zachodzi

relacja "ma": samochód ma silnik, komputer ma pamięć, okno ma
ramę

 Proces dziedziczenia wykorzystujemy, jeśli między obiektami
zachodzi relacja "jest": samochód jest pojazdem, klocek

obramowany jest klockiem, wojskowy jest osobą.
 Tak w przypadku dziedziczenia jak i kompozycji mamy do czynienia

z podobiektem: obiekt klasy bazowej bądź obiekt będący
składnikiem zajmują część pamięci wydzielonej dla całego obiektu.

Dziedziczenie kilkupokoleniowe

Klasa pochodna od jakiejś klasy sama może być klasą macierzystą dla
innej klasy.

class pojazd {

....

}

class samochod: public pojazd{

....

}

class taksowka: public samochod{

....

}

class radio_taxi: public taksowka{

....

}

Hierarchia klas

 Jedna klasa macierzysta może mieć wiele klas pochodnych.
 Każda z tych klas pochodnych może być klasą macierzystą kolejnych

klas pochodnych.

 W ten sposób powstaje tak zwana hierarchia klas lub hierarchia
dziedziczenia.

 Zwyczajowo klasę najbardziej pierwotną wizualizuje się najbardziej
w górze, a kolejne klasy pochodne rozrastają się w dół.

 Stąd częściowy porządek poniędzy klasami jaki wprowadza

hierarchia dziedziczenia opisuje się przy pomocy zwrotu: A jest

wyżej(niżej) od klasy B w hierarchii dziedziczenia

 W zwrocie tym "wyżej" oznacza, że A jest przodkiem B, a "niżej", że

B jest przodkiem A.

Ustawienie klas w hierarchię dziedziczenia, to nie tylko oszczędność czasu

przy definiowaniu klas znajdujących się na dole hierarchii. Ważniejsze jest
to, że obiekty, które znajdują się na dole hierarchii, mogą być czasem

traktowane tak, jakby były obiektami z góry hierarchii.

Pożytki z dziedziczenia

 Oszczędzamy czas: definiujemy tylko różnice, a nie wszystko od
nowa

 Aby użyć klasy do tworzenia klas pochodnych, nie musimy znać
kodu klasy podstawowej, wystarczy gdy wiemy jak z niej korzystać

 przybliża to sztukę programowania do życia codziennego
 jest wielkim ułatwieniem w programowaniu zespołowym

 jest nieocenione przy dużych projektach, bo pozwala pracować
lokalnie: nie musimy przez cały czas pamiętać wszystkich

szczegółów i o nie się martwić

